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ABSTRACT 
In the field of educational data mining, there are competing 

methods for predicting student performance. One involves 

building complex models, such as Bayesian networks with 

Knowledge Tracing (KT), or using logistic regression with 

Performance Factors Analysis (PFA). However, Wang and 

Heffernan showed that a raw data approach can be applied 

successfully to educational data mining with their results from 

what they called the Assistance Model (AM), which takes the 

number of attempts and hints required to answer the previous 

question correctly into account, which KT and PFA ignore. We 

extend their work by introducing a general framework for using 

raw data to predict student performance, and explore a new way 

of making predictions within this framework, called the 

Assistance Progress Model (APM). APM makes predictions based 

on the relationship between the assistance used on the two 

previous problems. KT, AM and APM are evaluated and 

compared to one another, as are multiple methods of ensembling 

them together. Finally, we discuss the importance of reporting 

multiple accuracy measures when evaluating student models. 
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1. INTRODUCTION 
Understanding and modeling student behavior is important for 

intelligent tutoring systems (ITS) to provide assistance to students 

and help them learn. For nearly two decades, Knowledge Tracing 

(KT) [5] and various extensions to it [12, 16, 18] have been used 

to model student knowledge as a latent using Bayesian networks, 

as well as to predict student performance. Other models used to 

predict student performance include Performance Factors 

Analysis (PFA) [14] and Item Response Theory [8]. However, 

these models do not take assistance information into account. In 

most systems, questions in which hints are requested are marked 

as wrong, and students are usually required to answer a question 

correctly before moving on to the next one. Therefore, the number 

of hints and attempts used by a student to answer a question 

correctly is likely valuable information. 

Previous work has shown that using assistance information helps 

predict scores on the Massachusetts Comprehensive Assessment 

Systems math test [6], can help predict learning gains [1], and can 

be more predictive than binary performance [17]. Recently, it has 

been shown that using simple probabilities derived from the data 

based on the amount of assistance used, an approach called the 

Assistance Model (AM), can improve predictions of performance 

when ensembled with KT [15]. 

This work continues research in the area of using assistance 

information to help predict performance in three ways: 

1. Specifying a framework for building “tabling methods” 

from the data, a generalization of AM 

2. Experimenting with a new model within this framework 

called the Assistance Progress Model (APM), which 

makes predictions based on the relationship between the 

assistance used on the previous two problems 

3. Experimenting with new ways of ensembling these 

models to achieve better predictions 

Additionally, the importance of reporting multiple accuracy 

measures when evaluating student models is discussed, as well as 

why three of the most commonly reported measures (mean 

absolute error (MAE), root mean squared error (RMSE) and area 

under the ROC curve (AUC)) do not always agree on which 

model makes the most accurate predictions. 

Section 2 describes the tutoring system and dataset used. Section 

3 describes the methodology: the models and ensembling methods 

used, the tabling method framework, and the procedure for 

evaluating the models. Section 4 presents the results, followed by 

discussion and possible directions for future work in Section 5. 

2.  DATA 
The data used here was the same used in [15], which introduced 

AM. This dataset comes from ASSISTments, a freely available 

web-based tutoring system for 4th through 10th grade mathematics. 

While working on a problem within ASSISTments, a student can 

receive assistance in two ways: by requesting a hint, or by 

entering an incorrect answer, as shown in Figure 1. 

 

 



 

Figure 1. Examples of assistance within ASSISTments (from 

Wang and Heffernan, 2011) 

The dataset comes from four Mastery Learning classes conducted 

in 2009, where students worked on problem sets until achieving 

some criterion, usually specified as answering three questions in a 

row correctly. The questions in these problem sets were generated 

randomly from templates, with the difficulty of each question 

assumed to be the same as all other questions generated from the 

same template. No problem selection algorithm was used to select 

the next question. 

Two hundred 12-14 year old 8th grade students participated in 

these classes, generating 17,776 problem logs from 93 problem 

sets. However, due to the nature of the models studied in this 

paper, data from two of these students could not be used since 

these two students never answered more than one question within 

the same problem set. 

Since two of the models cannot be used to predict performance on 

the first question of a problem set, as they rely on assistance usage 

on previous problems, these models were not trained or evaluated 

on the first question answered by a student on a given problem 

set. This reduced the dataset for these models to 12,099 problem 

logs. KT models were still trained using the entire dataset, but 

only evaluated on the 12,099 logs they had in common with the 

other models. 

3. METHODS 
This section begins by giving an overview of KT, then introduces 

a framework for building data-driven student models called 

“tabling methods,” and describes two such methods: AM and 

APM. Next, the approaches used to ensemble these individual 

models together are briefly discussed. Finally, the procedure and 

measures used to evaluate all models are discussed. 

3.1 Knowledge Tracing 
KT is a well-studied student model introduced in [5] that keeps 

track over time of the probability that a student has mastered a 

given skill, given their past performance as evidence. The 

probability that a skill for a given student is in the “known” (vs. 

the “unknown”) state can then be used to predict future 

performance. 

Constructing KT models involves learning four parameters:  

1. Initial Knowledge (L0) – the probability the student has 

mastered the skill before attempting the first question 

2. Learn Rate (T) – the probability the student will have 

mastered the skill after attempting a given question if 

they have not mastered the skill already, independent of 

performance 

3. Guess Rate (G) – the probability the student will answer 

correctly despite not having mastered the skill 

4. Slip Rate (S) – the probability the student will answer 

incorrectly despite having mastered the skill 

KT models can be represented as static, “unrolled” Bayesian 

networks, as shown in Figure 2. The level of knowledge Km at 

time step m influences performance on question Qm. Initial 

knowledge influences K0, while knowledge at time step m-1 

influences knowledge at time step m for m > 0. The learned T, G 

and S parameters are the same across all practice opportunities, 

meaning that the conditional probability tables (CPTs) for all 

nodes Km where m > 0 have the same values, and the CPTs for all 

Q nodes have the same values. 

 

Figure 2. Static Bayesian network representation of 

Knowledge Tracing 

In this work, the Bayes Net Toolbox for Matlab [9] is used to 

create separate KT models for each problem set. The parameters 

for each model are learned using Expectation-Maximization, with 

initial values of 0.3 for L0, 0.09 for T, 0.1 for G and 0.09 for S. 

3.2 Tabling Methods 
In previous work [15], a data-driven approach called AM was 

used to predict performance based on the number of attempts and 

hints used on the previous problem. This was done by creating a 

table of probabilities of the student answering the next question 

correctly on the first attempt without any hints, indexed by the 

number of attempts and hints used on the previous problem. 

These probabilities were computed simply by computing the 

percentage of questions answered correctly on the first attempt 

with no hints, parameterized by the number of attempts and hints 

used on the previous problem. 

Then, unseen test data was predicted by using the number of 

attempts and hints used on the previous problem to do a table 

lookup. The corresponding probability of getting the next 

question correct in the table was assigned as the prediction. 

In this work, we present a generalization of this approach that 

serves as a framework for data-driven approaches for student 

modeling. The general procedure is as follows: 

1. Create a table based on one or more attributes of the 

training data. 



2. Compute the probability of answering a question 

correctly for each combination of values of the 

attributes selected in Step 1, and insert these 

probabilities into the proper cells in the table. 

3. For each previously unseen test case, do a table lookup 

based on the attributes of the test case to obtain the 

probability (over the training data) of the student 

answering the question correctly. 

4. Assign the retrieved probability as the prediction for the 

test case. 

The attributes selected in Step 1 can be anything available or 

computable from the data, such as the number of hints and 

attempts used on the previous problem as AM does, or the 

correctness of the previous problem, the time taken, the type of 

skill, etc. These attributes could also represent which bin an 

instance falls into, where bins are constructed by splitting up 

students and/or problems based on some criteria. 

Cells may need to be added to the table when values for one or 

more of the attributes are not available, depending on the nature 

of the attributes. If there are not enough data points for certain 

cells, it may help to simply combine them with others. Finally, 

depending on the nature of the selected attributes and the data, it 

may be useful to split certain cells based on some criterion. 

In this work, two data-driven approaches that follow this 

framework are explored: the Assistance Model, as described by 

Heffernan and Wang and further described below, and the 

Assistance Progress Model (APM), which constructs a table based 

on the relationships between hints and attempts used on the 

previous two problems. 

3.2.1 Assistance Model 
As described previously, AM consists of a table of probabilities of 

a student answering a question correctly based on the number of 

attempts and the percentage of available hints used on the 

previous problem of the same skill. Attempts are broken into three 

bins: 1, (1, 6] and (6, ∞), while the percentage of hints is broken 

into four: 0, (0, 50], (50, 100) and 100. The AM table constructed 

from the entire dataset is shown in Table 1. 

Table 1. AM table for entire dataset 

 Attempts 

 

 

Hint % 

 1 (1, 6] (6, ∞) 

0 0.778 0.594 0.480 

(0, 50] 0.560 0.623 0.444 

(50, 100) 0.328 0.461 0.444 

100 0.264 0.348 0.374 

 

For instance, according to Table 1, when students answered 

correctly on the first attempt with no hints, they answered the next 

question correctly 77.8% of the time. On the other hand, if they 

required over six attempts and used all of the hints available, they 

answered the next question correctly only 37.4% of the time. 

According to Table 1, when attempts are held constant, the 

general trend is that as hint usage increases, the probability that 

the student will answer the next question correctly decreases. This 

makes sense since hints are more likely to be used by students 

with lower knowledge of the skill. 

When hints are held constant, different patterns occur with respect 

to the number of attempts used. When no hints are used, the 

probability of answering the next question correctly decreases as 

the number of attempts increases. This relationship is reversed 

when all hints are used. Finally, if just some of the hints are used, 

making a few attempts (between 2 and 6, inclusive) helps more 

than making one attempt, but making many attempts (> 6) 

decreases the probability of answering the next question correctly. 

The pattern for no hints can be explained as more attempts 

required being indicative of lower student knowledge. For all 

hints being used, more attempts may indicate the student is 

attempting to learn rather than just requesting hints until the 

answer is given to them. Using some of the hints suggests the 

student has not mastered the skill, but has some knowledge of it 

and is attempting to learn. The relationship between making one 

attempt and making a few attempts can be explained by the more 

attempts the student makes, the more they learn, to a point. The 

use of excessive amounts of attempts probably indicates the 

student is not learning, despite using some of the hints. 

The highest probability in the table, 0.778, corresponds to the 

case where the previous question was answered correctly. This is 

unsurprising since in this case, the student likely has mastered the 

skill. The lowest probability, 0.264, corresponds to making only 

one attempt while requesting all of the hints. This corresponds to 

the case where the student requests hints until the answer is given 

to them. This could be caused by the student simply not 

understanding the skill, or by the student “gaming the system,” or 

“attempting to succeed in an interactive learning environment by 

exploiting properties of the system rather than by learning the 

material” [2]. In either case, not much learning takes place. 

In [15], the AM table was constructed using 80% of the data and 

used to predict the remaining 20%. In this work, all models were 

evaluated using five-fold cross-validation. 

3.2.2 Assistance Progress Model 
AM only takes into account the number of attempts and 

percentage of hints required on the previous question to predict 

the student’s performance on the following question, without 

considering the progress the student is making over time in terms 

of attempts and hints used. APM, on the other hand, takes into 

account the relationships between the attempts and percentage of 

hints used on the previous two problems to predict performance 

on the next question. 

The initial model looked like Table 2, each entry corresponding to 

a case where the second of the two previous problems requires a 

lower, equal or higher number of attempts or percentage of hints 

than the one before it. The number of data points for each cell 

appears in parentheses. 

Table 2. Initial APM table for the entire dataset 

 Hint % Relationship 

Attempts 

Relationship 

 < = > 

< 0.672 (586) 0.611 (1410) 0.567 (60) 

= 0.649 (248) 0.734 (8309) 0.590 (83) 

> 0.541 (85) 0.552 (1019) 0.512 (299) 

 



However, it was necessary to extend the model to handle the case 

where there were fewer than two previous questions, so a separate 

cell was added for this situation (it had been treated as (equal 

attempts, equal hint %)). Next, it was observed that certain cells 

had few observations, so these cells were combined. Finally, it 

was realized that the (equal attempts, equal hint %) cell combined 

data of two very different situations: the case where both 

questions being compared were answered correctly, and the case 

where they were both answered incorrectly. Therefore, this cell 

was split into two cells according to correctness. The final APM 

table, with probabilities taken over the entire dataset, is shown in 

Table 3. Cells without enough data on their own have been 

merged, and the (equal attempts, equal hint %) cell has been split 

in two: the top cell corresponds to the case when both questions 

are answered correctly, and the bottom to when both are answered 

incorrectly. The top-left cell contains the probability that 

questions with fewer than two predecessors will be answered 

correctly. The number of data points per cell are in parentheses. 

Table 3. APM table for the entire dataset 

 Hint % Relationship 

Attempt 

Relationship 

0.708 

(2722) 

< = > 

< 0.672 

(586) 

0.611 (1410) 

0.580 (143) 
= 0.649 

(248) 

0.791 (5028) 

0.352 (559) 

> 0.551 (1104) 0.512 (299) 

 

According to Table 3, when the relationship between attempts is 

held constant, the general pattern is that the probability of 

correctness decreases as the relationship between the percentage 

of hints used worsens. The (equal attempts, equal hint %) cells do 

not fit this pattern, though this could be because they are split 

based on correctness. However, the same cell from Table 2 also 

does not fit the pattern. The same relationship exists between the 

attempt relationship and probability of answering correctly when 

the hint % relationship is held constant, again with the exception 

of the (equal attempts, equal hint %) cells. These patterns are 

intuitive, as students who are learning the material should require 

less assistance from one problem to the next and are likelier to 

answer the next question correctly, whereas those who are not 

learning will generally require the same amount of assistance or 

more to proceed, and are less likely to answer the next question 

correctly without assistance. 

The highest probability in the table corresponds to the case where 

the hints and attempts used are the same for the previous two 

questions, and both are answered correctly (0.791). The lowest is 

when they are the same and are both answered incorrectly (0.352). 

The former result is intuitive since it corresponds to the case 

where the student answers two questions in a row correctly, the 

best situation represented in the table. The latter corresponds to 

no progress in terms of assistance over the previous two 

questions, indicating that little if any learning has taken place. 

3.3 Ensembling Models 
As shown in [15], ensembling models can give better results than 

any individual model on its own. There are two goals in this work 

regarding ensembled models: improving the predictive power of 

AM by ensembling it with APM, and improving the predictive 

power of KT using both AM and APM. Wang and Heffernan 

already showed that ensembling KT with AM gives better results 

than KT on its own. It remains to be seen whether including APM 

will result in further improvements. 

In addition to using means and linear regression models, as done 

in [15], this work also uses decision trees and random forests. 

3.4 Evaluation 
To evaluate the models, three metrics are computed: MAE, 

RMSE, and AUC. These metrics are computed by obtaining 

predictions using five-fold cross-validation (using the same 

partition for each model), then computing each metric per student. 

Finally, the individual student metrics are averaged across 

students to obtain the final overall metrics. Computing the 

average across students for each metric in this way avoids 

favoring students with more data than others, and avoids 

statistical independence issues when it comes to computing AUC.  

For these reasons, Pardos et al used average AUC per student as 

their accuracy measure in their work in evaluating several student 

models and various ways of ensembling them [11]. 

All three of these metrics are reported because they are concerned 

with different properties of the set of predictions and therefore do 

not always agree on which model is best. MAE and RMSE are 

concerned with how close the real-valued predictions are, on 

average, to their actual binary values. On the other hand, AUC is 

concerned with how separable the predictions for positive and 

negative examples are, or how well the model is at predicting 

binary classes rather than real-valued estimates. 

For example, in Table 4, the first two sets of predictions (P1 and 

P2) achieve AUCs of 1 since both perfectly separate the two 

classes (0 and 1). However, P2 achieves much better MAE 

(0.3960) and RMSE (0.6261) values than P1 (0.5940 and 0.7669, 

respectively). What’s more, P3 achieves an AUC of only 0.5, but 

outperforms both P1 and P2 in terms of RMSE (0.5292) and P1 in 

terms of MAE (0.4400). 

Table 4. Example dataset 

Actual Value P1 P2 P3 

0 0 0.99 0.8 

1 0.01 1 0.8 

1 0.01 1 0.8 

0 0 0.99 0.8 

1 0.01 1 0.8 

 

Therefore, it is important to report all of these metrics. As shown 

above, they do not necessarily agree with each other. 

Additionally, although MAE and RMSE are similar, not even they 

always agree on the best model, as RMSE punishes larger errors 

more than MAE does. 

4. RESULTS 
In this section, the results for both the individual models and the 

ensemble models are reported. Given the importance of reporting 

multiple accuracy measures as discussed in the preceding section, 

three measures are reported for each model: MAE, RMSE and 

AUC. Each measure is computed by first computing the measure 



for each individual student, then averaging across students. The 

individual student measures are obtained by using predictions 

made using five-fold cross-validation, where the folds used are 

identical for every model. 

4.1 Individual Models 
The results of the three individual models are shown in Table 5. 

As described before, each of the three metrics are measured for 

each individual student, and then averaged across students. 

In addition to the individual models discussed in Section 3, the 

results for a baseline model (always predicts 1, the majority class) 

are reported to serve as a baseline for the other models. 

Table 5. Results for the individual models 

 MAE RMSE AUC 

Baseline 0.2510 0.4642 0.5000 

AM 0.3657 0.4129 0.5789 

APM 0.3844 0.4221 0.5618 

KT 0.3358 0.4071 0.6466 

 

Unsurprisingly, KT performs reliably better than AM and APM in 

MAE (t(197) = -8.45, p < .0001; t(197) = -13.55, p < .0001) and 

AUC (t(187) = 6.35, p < .0001; t(187) = 5.97, p < .0001), and at 

least marginally better in RMSE (t(197) = -1.75, p = .0824; t(197) 

= -4.44, p < .0001), as KT is a full student model, whereas AM 

and APM do not attempt to model student knowledge and make 

predictions solely on the basis of table lookups. Additionally, AM 

outperforms APM in MAE and RMSE (t(197) = -12.88, p < 

.0001; t(197) = -5.61, p < .0001), which is also not surprising 

considering that APM does not consider the actual number of 

attempts or percentage of hints used, only the relationships 

between them for the previous two questions. APM also has fewer 

parameters (9) than AM (12). The difference in AUC was not 

reliable (t(187) = 1.62, p = .1063). 

The baseline model reliably outperforms all other models in terms 

of MAE (t(197) = -15.30, p < .0001; t(197) = -18.36, p < .0001; 

t(197) = -10.62, p < .0001), and reliably underperforms all other 

models in terms of RMSE (t(197) = 5.87, p < .0001; t(197) = 

4.92, p < .0001; t(197) = 6.01, p < .0001) and AUC (t(187) = -

9.72, p < .0001; t(187) = -6.34, p < .0001; t(187) = -12.80, p < 

.0001). It makes sense that the baseline performs well in terms of 

MAE, given that the mean value of the target attribute, the 

correctness of a question, is 0.6910. RMSE punishes larger 

differences more than MAE, making the baseline pay more for its 

wrong predictions of all cases where the student got the question 

wrong. Finally, since all predictions share the same value, the 

baseline cannot do any better than chance at separating the data. 

Therefore, it earns an AUC value of 0.5000. 

These drastic differences in performance for the baseline alone 

across measures highlight the need for reporting multiple accuracy 

measures when evaluating student models. 

4.2 Ensembled Models 
In this subsection, various ways of ensembling the individual 

models are evaluated. Since KT was the best performer of the 

individual models in all three measures by at least marginally 

reliable margins, the ensembled models here are compared to KT. 

In the results for each ensemble method, underlined type indicates 

measures that are reliably worse than those for KT, boldface type 

indicates measures that are reliably better than those for KT, and 

regular type indicates there is no reliable difference between the 

measures for KT and the model in question. Statistical 

significance was determined using two-tailed pairwise t-tests and 

Benjamini and Hochberg’s false discovery rate procedure [4]. 

4.2.1 Mean 
The first ensembling method involved taking the simple mean of 

the predictions given by the various models. This was done in five 

ways: 1) with AM and APM to determine if it outperformed AM 

and APM on their own; combining KT with 2) AM and 3) APM 

to determine if either AM or APM improved predictions over 

using KT on its own; 4) with all three models to determine if it 

outperformed any of the individual models, and 5) taking the 

mean of AM and APM first, then taking the mean of those results 

with KT. The intuition for the last method is that KT performs 

better than AM, and most likely APM as well. Therefore, taking 

the mean of AM and APM first gives KT more influence in the 

final result while still incorporating both AM and APM. The 

results for these models are shown in Table 6. 

Table 6. Results for the mean models 

 MAE RMSE AUC 

AM, APM 0.3751 0.4137 0.5917 

KT, AM 0.3508 0.4006 0.6472 

KT, APM 0.3601 0.4033 0.6409 

KT, AM, APM 0.3620 0.4032 0.6433 

KT, (AM, APM) 0.3554 0.4010 0.6469 

 

According to the table above, taking the mean of KT and any 

combination of AM and APM predictions produces results that do 

as well as or reliably outperform KT in RMSE and AUC but 

reliably underperform in MAE. There is no reliable difference 

between the top two performing models, “KT, AM” and “KT, 

(AM, APM)” except in MAE, where “KT, AM” performs reliably 

better (t(197) = -12.88, p < .0001). Therefore, at least when taking 

means, adding APM to a model that already includes AM and KT 

does not reliably improve accuracy in any measure. 

Additionally, taking the mean of the AM and APM models yields 

predictions that are comparable in RMSE and AUC, while 

reliably worse in MAE (t(197) = 12.88, p < .0001). Therefore, 

including APM predictions in mean models does not appear to 

improve predictive accuracy. 

4.2.2 Linear Regression 
The second ensembling method is linear regression. In this 

method, the training data for each fold was used to construct AM, 

APM and KT models. Predictions were then made for each 

training instance using these models, and then a linear regression 

model was built using the three individual predictions as 

predictors, along with the number of attempts and percentage of 

hints used, and nominal attributes describing the relationship 

between the attempts and hints used on the previous two 

problems. This model was then applied to the fold’s test data, 

whose instances were augmented with predictions from the AM, 

APM and KT models built from the fold’s training data. 

Linear regression models were built with six different subsets of 

the aforementioned features: 



1. AM – includes the AM prediction as well as the number 

of attempts and percentage of hints used on the previous 

problem 

2. AM, KT – the AM set, along with the KT prediction 

3. AM, APM* – the AM set, along with the two nominal 

attributes indicating the relationships between the 

attempts and hints used for the previous two problems 

4. AM, APM*, KT – the AM, APM* set, along with the 

KT prediction 

5. AM, APM – the AM, APM* set along with the APM 

prediction 

6. AM, APM, KT – the AM, APM*, KT set along with the 

APM prediction 

The motivation for testing these subsets of attributes is to 

determine the relative improvements attained by progressively 

adding more assistance relationship information to the model, 

both with and without KT. These models are built in Matlab using 

the LinearModel class. The results for the linear regression 

models are shown in Table 7. 

Table 7. Results for the linear regression models 

 MAE RMSE AUC 

AM 0.3701 0.4148 0.5770 

AM, KT 0.3338 0.4024 0.6500 

AM, APM* 0.3671 0.4127 0.5753 

AM, APM*, KT 0.3319 0.4005 0.6341 

AM, APM 0.3647 0.4112 0.5874 

AM, APM, KT 0.3316 0.4000 0.6379 

 

Not surprisingly, models that incorporate KT predictions all 

outperform their counterparts that lack KT predictions across all 

three measures. AM and APM together do better than AM, but 

not when KT is included. The best combination of models for 

linear regression is AM and KT, as it was for the mean models. 

Unlike its corresponding mean model, the linear regression model 

that combines AM and KT reliably outperforms KT in MAE and 

RMSE, and is comparable in terms of AUC. This is consistent 

with the previous finding that combining AM and KT using linear 

regression outperforms KT [15], though their model did reliably 

better than KT for all three measures, which were taken over the 

entire dataset rather than averaged across students. 

4.2.3 Decision Trees 
Next, decision tree models were built from the results of the three 

individual models in the same way that the linear regression 

models were built, with the exception that the minimum number 

of data points per leaf and the level of pruning were optimized 

using brute force search per fold by using sub-fold cross-

validation. The search varied the pruning level from 0 to 100% of 

the model in steps of 5%, and varied the minimum data points per 

leaf from 5 to 50 in steps of 5. 

The decision trees were given the same set of attributes as the 

linear regression models, and were tested using the same six 

subsets of those attributes as described above for the linear 

regression models. The decision trees were built in Matlab using 

classregtree, specifying the method as ‘regression’. 

The same sub-folds were used for each fold for all decision tree 

models. The results for these models are reported in Table 8. The 

model names correspond to the same subsets of attributes used for 

the linear regression models. 

Table 8. Results for the decision tree models 

 MAE RMSE AUC 

AM 0.3637 0.4119 0.5793 

AM, KT 0.3293 0.4009 0.6385 

AM, APM* 0.3586 0.4087 0.5847 

AM, APM*, KT 0.3286 0.4008 0.6358 

AM, APM 0.3586 0.4090 0.5860 

AM, APM, KT 0.3290 0.4012 0.6351 

 

As for the linear regression models, the models that include KT 

predictions perform better than those that did not, across all three 

accuracy measures. Adding APM* to AM reliably improves 

accuracy, but there is no difference between this and combining 

AM and APM. Adding APM features of any kind do not improve 

models that include KT predictions. As for the linear regression 

models, the decision tree that performs the best is the one that 

only includes KT and AM, which reliably outperforms KT in both 

MAE and RMSE, with no reliable difference in AUC. 

4.2.4 Random Forest 
The final ensembling method used in this work was Random 

Forest, which is a collection of decision trees where each 

individual decision tree was built from a random subset of the 

attributes and a random subset of the data. In this work, random 

forests consisted of 1,000 such trees, which were each built 

randomly from any subset of the attributes and between 10% and 

90% of the data. The prediction of the random forest as a whole 

for a given test instance was the simple mean of the predictions 

given by each individual tree within the forest. The trees were 

regression trees and required a minimum of five data points per 

leaf node. No pruning was done, as varying the pruning levels did 

not appear to significantly affect the predictive accuracy of the 

forests for this dataset. 

The same set of attributes used for linear regression and decision 

trees were used in the random forest models, and the same six 

attribute subsets were tested separately as for the other methods.  

With the exception of MAE (many of the predictions were 1, 

which happens to be the majority class), these models performed 

worse than the other ensembling methods. This could be due to 

most of the trees being overfit to the training data, as sub-fold 

cross-validation with brute force search of optimal pruning 

parameters was not performed for these trees as it was for the 

individual decision trees reported on in the previous section. 

However, averaging these models with KT produced better 

results, as shown in Table 9. 

Table 9. Results for averaging the KT and random forest 

models 

 MAE RMSE AUC 

AM 0.3505 0.4002 0.6461 

AM, KT 0.3054 0.4117 0.6313 

AM, APM* 0.3479 0.3985 0.6477 



AM, APM*, KT 0.3005 0.4109 0.6358 

AM, APM 0.3485 0.3990 0.6468 

AM, APM, KT 0.2997 0.4090 0.6375 

 

Unlike other ensembling methods, when random forest 

predictions are averaged with those of KT, progressively more 

APM data improves accuracy, though not always significantly. 

Otherwise, adding APM predictions appears to worsen results. 

4.2.5 Overall 
For the first three ensembling methods, those that included only 

AM and KT performed the best. However, for random forests, it 

was the average of KT with the random forest consisting of 

predictions from all three individual models. Table 10 reproduces 

these results, with bold-faced type indicating values that are 

reliably better than KT, and underlined type indicating values that 

are reliably worse. Table 11 reports the p-values of the differences 

between these models for each accuracy measure, with values 

indicating reliable differences in bold-faced type. 

Table 10. Results for the best of each ensembling method 

 MAE RMSE AUC 

MEAN 0.3508 0.4006 0.6472 

LR 0.3338 0.4024 0.6500 

TREE 0.3293 0.4009 0.6385 

RF 0.2997 0.4090 0.6375 

 

Table 11. Significance tests for the best ensembling methods 

 MAE RMSE AUC 

MEAN, LR 0.0000 0.1659 0.4274 

MEAN, TREE 0.0000 0.8803 0.1116 

MEAN, RF 0.0000 0.0022 0.1400 

LR, TREE 0.0000 0.1669 0.0223 

LR, RF 0.0000 0.0026 0.0406 

TREE, RF 0.0000 0.0001 0.8476 

 

From Tables 10 and 11, it appears that either the decision tree or 

random forest (averaged with KT) models could be considered the 

best model, depending on which measure is considered the most 

important. The random forest model is reliably better than the 

decision tree in terms of MAE, but reliably worse in terms of 

RMSE. 

In general, it appears there is some value in comparing the usage 

of assistance over the previous two problems, as ensembling APM 

with AM consistently gives better results than using AM on its 

own, except when taking means. Despite this, ensemble methods 

that use only KT and AM perform better than any other model 

studied in this work, including all of those using APM. One 

explanation could be that one important thing that APM captures 

is learning over the previous two questions, which is already 

modeled in KT. The one exception is when a random forest of all 

individual models is averaged with KT, which indicates that there 

is information that APM takes into account that neither AM nor 

KT considers. Right now, it is not clear which of these ensemble 

models is best given the disagreement among the metrics. It 

depends on the relative importance placed on each metric. 

5. DISCUSSION AND FUTURE WORK 
In this work, we generalized an existing raw data model, AM, into 

a framework for predicting student performance by tabling raw 

data. This framework provides an efficient way for adding new 

sources of information into existing student models. From there, 

we developed a new model, APM, which makes predictions based 

on the relationship between the assistance used on the previous 

two problems. Finally, we evaluated these models and KT, and 

then explored several ways of ensembling these models together. 

We found that although APM is not as predictive as AM, 

combining the two with various ensembling methods produces 

models that reliably outperform AM on its own. This shows that 

prediction accuracy can be strengthened by recognizing the 

progress a student makes in terms of the assistance they use. 

However, for the most part, the best models studied in this paper 

were those that only ensembled KT and AM. Adding APM to 

such models did not improve accuracy, except in the case of 

random forests averaged with KT. Despite this, it is still evident 

that there is value in considering student progress in terms of 

assistance. Perhaps there are better methods of incorporating that 

information into predictive models that will yield better results. 

We also confirmed that ensembles of AM and KT reliably 

outperform KT, in line with previous work [15]. Whereas 

previous work showed this was the case when computing the 

measures across all problem logs, this work shows it also holds 

when the measures are computed as averages across students. 

We reported three different accuracy measures to fairly compare 

models against each other, and argued that reporting multiple 

measures is necessary since they measure different properties of 

the predictions and therefore do not always agree on which model 

is best. We also argued that computing these measures per 

student, then averaging across students is more reliable than 

treating all problems as equal since the latter approach favors 

models that are biased towards students with more data. 

Although we found that the ensemble methods perform better than 

KT at predicting performance, such models are difficult to 

interpret and therefore may be limited in usefulness. Fitting a KT 

model for a given skill yields four meaningful parameters that 

describe the nature of that skill, whereas ensemble methods in this 

work give models of how to computationally combine predictions 

from KT and AM to maximize predictive accuracy. Since KT 

models student knowledge, it can be used to guide an ITS session. 

KT can also be extended to quantify the effects of help [3], 

gaming [7], and individual items [10], among other factors, on 

learning and performance. It appears the usefulness of the 

ensemble methods is limited to prediction of the next question, a 

task that serves as a good measure of the validity of a student 

model but does not appear to be useful in guiding ITS interaction. 

On the other hand, AM and APM are simple to compute and do 

not suffer from the identifiability problem that KT does [13]. AM 

and APM consist of summaries of the raw data rather than 

inferred parameters. Although not as predictive as KT, AM and 

APM give interpretable statistics with little chance of overfitting. 

Additionally, they consider the assistance used, which could 

indicate the usefulness of a system’s help features. Other tabling 

methods could be used to study the effects of other aspects of ITS, 

though likely with lower predictive accuracy than KT due to the 

limited set of values such methods can use as predictions. 



Since the ensemble models outperformed KT but appear to be 

limited to predicting a student’s performance on the next question, 

finding a way to use such predictions within ITS would be a 

useful contribution. Question selection could be a possible 

application (i.e. selecting an easier question if the model predicts 

the student will answer the next question incorrectly). 

Another direction for future work could be determining other 

useful specializations of the framework we presented for building 

models from raw data. AM and APM focus on assistance, but 

other attributes could prove useful. Additionally, this work did not 

investigate grouping students or problems. 

Another future direction could be determining why some models, 

like APM, can reliably improve a model such as AM when 

ensembled with it, but not improve results when a third model 

such as KT is involved. It appears that the information that APM 

uses is important, but may not be used by APM in the best way 

possible. Examining the use of assistance over the course of more 

than just the previous two problems may also prove useful. 

Finally, experimenting with other methods of ensembling the 

models described here and other raw data models within this 

framework is also worth looking into. Previous work 

experimented with means and linear regression [15], and this 

work expanded upon those methods by including decision trees 

and random forests. However, other work in ensembling student 

models suggests that neural networks may perform better [11]. 

6. ACKNOWLEDGMENTS 
This research was supported by a Graduate Assistance in Areas of 

National Need (GAANN) fellowship and Neil Heffernan's 

CAREER grant. We also acknowledge the many additional 

funders of the ASSISTments Platform found here: 

http://www.webcitation.org/5ym157Yfr 

All of the opinions expressed in this paper are those solely of the 

authors and not those of our funding organizations. 

7. REFERENCES 
[1] Arroyo, I., Cooper, D.G., Burleson, W., and Woolf, B.P. 

Bayesian Networks and Linear Regression Models of 

Students’ Goals, Moods, and Emotions. in Handbook of 

educational data mining, CRC Press, Boca Raton, FL, 2010, 

323-338. 

[2] Baker, R.S.J.d., Is Gaming the System State-or-Trait? 

Educational Data Mining Through the Multi-Contextual 

Application of a Validated Behavioral Model. in Complete 

On-Line Proceedings of the Workshop on Data Mining for 

User Modeling at the 11th International Conference on User 

Modeling, (Corfu, Greece, 2007), 76-80. 

[3] Beck, J.E., Chang, K., Mostow, J., Corbett, A. Does help 

help? Introducing the Bayesian Evaluation and Assessment 

methodology. Intelligent Tutoring Systems, Springer Berlin 

Heidelberg, 2008, 383-394. 

[4] Benjamini, Y., Hochberg, Y. Controlling the False Discovery 

Rate: A Practical and Powerful Approach to Multiple 

Testing. Journal of the Royal Statistical Society, Series 

B, 57(1), 289–300. 

[5] Corbett, A. and Anderson, J. Knowledge Tracing: Modeling 

the Acquisition of Procedural Knowledge. User Modeling 

and User-Adapted Interaction, 4(4), 253-278. 

[6] Feng, M., and Heffernan, N.T., Can We Get Better 

Assessment From a Tutoring System Compared to 

Traditional Paper Testing? Can We Have Our Cake (Better 

Assessment) and Eat It Too (Student Learning During the 

Test)? in Proceedings of the 3rd International Conference on 

Educational Data Mining, (Pittsburgh, PA, 2010), Springer 

Berlin Heidelberg, 309-311. 

[7] Gong, Y., Beck, J., Heffernan, N., Forbes-Summers, E, The 

impact of gaming (?) on learning at the fine-grained level. in 

Proceedings of the 10th International Conference on 

Intelligent Tutoring Systems, (Pittsburgh, PA, 2010), 

Springer, 194-203. 

[8] Johns, J., Mahadevan, S., Woolf, B. Estimating student 

proficiency using an item response theory model. Intelligent 

Tutoring Systems, Springer Berlin Heidelberg, 2006, 473-

480. 

[9] Murphy, K. The bayes net toolbox for matlab. Computing 

science and statistics, 33(2), 1024-1034. 

[10] Pardos, Z.A., Dailey, M.D., Heffernan, N.T. Learning what 

works in ITS from non-traditional randomized controlled 

trial data. International Journal of Artificial Intelligence in 

Education, 21(1), 47-63. 

[11] Pardos, Z.A., Gowda, S. M., Baker, R.S.J.d. and Heffernan, 

N. T. The Sum is Greater than the Parts: Ensembling Models 

of Student Knowledge in Educational Software. ACM 

SIGKDD Explorations, 13(2), 37-44. 

[12] Pardos, Z. A., Heffernan, N. T., Modeling Individualization 

in a Bayesian Networks Implementation of Knowledge 

Tracing. in Proceedings of the 18th International Conference 

on User Modeling, Adaptation and Personalization, (Big 

Island, Hawaii, 2010), 255-266. 

[13] Pardos, Z. A., Heffernan, N. T., Navigating the parameter 

space of Bayesian Knowledge Tracing models: 

Visualizations of the convergence of the Expectation 

Maximization algorithm. in Proceedings of the 3rd 

International Conference on Educational Data Mining. 

(Pittsburg, PA, 2010), Springer Berlin Heidelberg, 161-170. 

[14] Pavlik, P.I., Cen, H., Koedinger, K., Performance Factors 

Analysis – A New Alternative to Knowledge. in Proceedings 

of the 14th International Conference on Artificial 

Intelligence in Education, (Brighton, U.K., 2009), 531-538. 

[15] Wang Y., Heffernan N. T., The "Assistance" Model: 

Leveraging How Many Hints and Attempts a Student Needs. 

in Proceedings of the 24th International FLAIRS 

Conference, (Palm Beach, FL, 2011) 

[16] Wang, Y., Heffernan, N.T., The Student Skill Model. in 

Proceedings of the 11th International Conference on 

Intelligent Tutoring Systems, (Chania, Greece, 2012), 399-

404. 

[17] Wang, Y., Heffernan, N.T. and Beck, J.E., Representing 

Student Performance with Partial Credit. in Proceedings of 

the 3rd International Conference on Educational Data 

Mining, (Pittsburgh, PA, 2010), Springer Berlin Heidelberg, 

335-336 

[18] Xu, Y., Mostow, J., Comparison of methods to trace multiple 

subskills: Is LR-DBN best? in Proceedings of the Fifth 

International Conference on Educational Data Mining. 

(Chania, Greece, 2012), 41-48.


